1	(a)	conduction	rod / target / anode copper / thickness of rod good conductor / increases amount of conduction (of thermal energy)	B1 B1 B1	[3]
	(b)	convection	fins large surface area / number of fins / spaces between fins large contact with air / allows air to rise between fins	B1 B1 B1	[3]
	(c)	radiation	fins / black surface / end of rod black surface / large surface area good emitter / large radiating surface ignore absorber	B1 B1 B1	[3]

2	(a)	heater in liquid 4	points 3 points 2 points 1 B3	
		OR		
		mixtures method lagged container liquid hot solid/hot liquid means of heating hot solid / liquid (seen or stated) means of weighing hot solid / liquid / use of known mass (seen or stated) thermometer	points 3 points 2 points 1 B3	
	(ii)	electrical method initial & final temps of liquid OR temp rise voltmeter reading (however expressed) ammeter reading (however expressed) heating time mass of liquid	В3	
		OR		
		mixtures method initial and final temps of liquid OR temp rise initial and final temps of added solid / liquid OR temp drop mass of added solid / liquid mass of liquid —1 e.e.o.o		
		SHC of added solid / liquid	В3	
	(b)	$Q = mc\theta$ in any form 100.6 - 12 OR 88.6 $0.8 \times 3900 \times 88.6$ $276 \ 432 \ J$	B1 C1 C1 A	
	(ii)	Q = Wt OR (t =) candidate's (i)/620 445.858 s ecf (i)	A1	[12]

3	(a)		ergy / heat required to change state / phase / any example of change of the / phase	M1	
		OR	n no change in temperature / at a specified temperature energy to break bonds between molecules /atoms n no change in K.E.	A1 M1 A1	
	(b)	any	time or range of time between 1.6 (min) and 14.0 (min) inclusive [no UP]	B1	
	(c)	turns substance to gas / vapour OR causes evaporation OR escape from liquid		C1	
			ergy to break bonds/separate molecules/overcome intermolecular forces ore move faster / PE increases	A1	
	(d)	(i)	Pt / 2 × 4 / 2000 × 4 / 2 × 240 / 2000 × 240 / 8 / 8000 / 480 / 480000 480 000 J OR 480 kJ	C1 A1	
		(ii)	$(\theta$ =) 43 (°C) seen anywhere Q = mc θ OR 480000 = m x 1760 × 43 in any form ecf. from (i) 6.34 kg or 6.3 kg ecf.	C1 C1 A1	[10]
4	(a	(i)	change in length / distance moved (accept "how much it expands") per unit / given temp rise OR equivalent	B1	
		(ii)	large bulb OR thin / narrow bore / tube / capillary NOT thin / narrow thermometer	B1	
	(b)	(i)	difference between the highest and lowest temperatures ignore reference to fixed points	B1	
		(ii)	tube (sufficiently) long / not too short OR bore wide/not too thin OR little/not too much liquid/bulb NOT change liquid	B1	
	(c)	(i)	idea of equal size divisions/expansion for equal temperature rises OR $\Delta l/\Delta \theta$ constant OR reference to l against θ graph straight line ignore 1 division = 1 °C		
		(ii)	uniform bore OR alcohol/liquid expands uniformly (with temp)	<u>B1</u>	[6]

5	(a	heat/energy to raise/change temperature of 1 kg/1g/unit mass through 1°C/1K (mention of change of state scores zero)	M1 A1
	(b)	Q = mc θ (for θ accept t, T, $\Delta\theta$, Δ t, or Δ T) 23800 = 0.93 × c × (41.3 – 13.1) 907.5 or 907 or 908 or 910 J/(kg °C) or J/(kg K) at least 2 sig. figs (for unit in (b) and (c)(i) condone no brackets and extra solidus)	B1 C1 A1
	(c)	1212.9 or 1200 or 1210 or 1213 or 1214 J/(kg °C) or J/(kg K)	B1
		(ii) more energy lost (to surroundings) (average) temperature is higher/initial temperature higher/no cooling time allowed/temperature rise is lower/time of heating may be longer/	B1
		rate of heating may be lower	B1
	(d)	insulate block/provide lid/cover with shiny foil) start & finish same amount below & above room temperature) any 2 get heater up to temperature before inserting) put oil in gap between heater & block)	B1 + B1
			[Total: 10]